Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 423
Filter
1.
J Contam Hydrol ; 264: 104356, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38723447

ABSTRACT

Karst groundwater plays an irreplaceable role in the formation and development of urban areas, and land-use and land-cover change (LUCC) and the input of pollutants during the urbanization process would pose potential environmental risks to underground rivers. We analysed the relationship between urbanization processes and underground river hydrochemistry over nearly 35 years in Guiyang city, southwest of China, it was found that concentrations of various cations and anions, as well as total dissolved solids (TDS), gradually increased with the urbanization process, with significant fluctuations during the rapid urbanization periods. The Hydrochemical Facies Evolution Diagram (HFED) clearly showed the influence of urbanization on the hydrochemistry of the underground rivers. The ion ratios of γMg2+/γCa2+-γHCO3-, γNa+/γCl-, Ca2+/Mg2+-Ca2+ or Mg2+/Σ cations, HCO3-/SO42--HCO3- or SO42-/Σ anions revealed two distinct phases in the hydrochemical evolution of the underground river system, highly consistent with the urbanization process. Before the rapid urbanization, acid deposition and agricultural activities affected the hydrochemistry, with HCO3-Ca·Mg and HCO3·SO4-Ca·Mg as the dominant types controlled by limestone and dolomite dissolution in water-rock interactions. As acid deposition diminished, the input of SO42- from urban sewage compensated for the reduced impact, but the increased impermeable surfaces reduced the infiltration of atmospheric precipitation, leading to a reduced dissolution of dolomite minerals in water-rock interactions, resulting in a decrease in Mg2+ and a change in the hydrochemical type. The hydrochemical type evolved from a single HCO3·SO4-Ca·Mg type and HCO3-Ca·Mg type to multiple types, such as HCO3·Cl-Ca, HCO3·SO4-Ca, HCO3-Ca, and HCO3·SO4-Ca·Mg, and was highly unstable. With changes in land use, the proportions of various cations and anions in the hydrochemistry changed, especially NH4+, NO3-, SO42-, Na+, and Cl-, which were more sensitive to human activities. This study indicated the impact of urbanization on the hydrochemistry of the underground river system, with the input of SO42- from human activities and the increase in paved surfaces due to urbanization collectively altering the hydrochemical types of the underground river system. The rapid response of karst underground river system hydrochemistry indicates a potential impact on groundwater system by urbanization that should not be ignored.

3.
J Colloid Interface Sci ; 666: 47-56, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583209

ABSTRACT

Solar light-driven hydrogen peroxide (H2O2) production through the two-electron oxygen reduction reaction (ORR) from the earth-abundant O2 and water is a potential alternative to the energy-consuming anthraquinone oxidation process, although the activity of the common photocatalysts is still insufficient to satisfy the industrial demands. Poor accessibility of O2 to surface/interface and fast carrier recombination is the limiting-factor for catalytic systems. Herein, we develop a nanohybrid photocatalysts by introducing 1D conducting polymer of polypyrrole (PPy) nanotube on In4SnS8 to promote H2O2 evolution under visible light, obtaining up to 254.8 µM in 2 h, which is 2.4- and 13-fold larger than that of individual In4SnS8 and PPy. The detailed characterizations of hybrid structure, O2 adsorption behaviors, charge carrier dynamics over PPy/In4SnS8 in conjunction with computational calculations corroborate that the modification of PPy could enlarge the amount of O2 adsorption amount, expedite the cycle of O2 adsorption/desorption and accelerate the transportation of electrons from In4SnS8 to the interface, eventually speeding up H2O2 photoproduction via indirect 2e- ORR pathway. This work establishes a paradigm of regulating the interfacial microenvironment by polymer for boosting H2O2 photogeneration through high selectivity of ORR.

4.
Clin. transl. oncol. (Print) ; 26(4): 797-807, Abr. 2024. ilus
Article in English | IBECS | ID: ibc-VR-44

ABSTRACT

Tumor cells must resist the host's immune system while maintaining growth under harsh conditions of acidity and hypoxia, which indicates that tumors are more robust than normal tissue. Immunotherapeutic agents have little effect on solid tumors, mostly because of the tumor density and the difficulty of penetrating deeply into the tissue to achieve the theoretical therapeutic effect. Various therapeutic strategies targeting the tumor microenvironment (TME) have been developed. Immunometabolic disorders play a dominant role in treatment resistance at both the TME and host levels. Understanding immunometabolic factors and their treatment potential may be a way forward for tumor immunotherapy. Here, we summarize the metabolism of substances that affect tumor progression, the crosstalk between the TME and immunosuppression, and some potential tumor-site targets. We also summarize the progress and challenges of tumor immunotherapy.(AU)


Subject(s)
Humans , Male , Female , Immunotherapy , Metabolism , Hypoxia , Tumor Microenvironment , Neoplasms/drug therapy
5.
J Hazard Mater ; 470: 134156, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565015

ABSTRACT

While antimony (Sb) and arsenic (As) co-contamination in subsurface soil systems due to the legacy of Sb smelting wastes has been documented, the role of inherent heterogeneity on pollutant migration is largely overlooked. Herein this study investigated Sb and As migration in a slag impacted, vertically stratified subsurface at an abandoned Sb smelter. A 2-dimensional flume was assembled as a lab-scale analogue of the site and subject to rainfall and stop-rain events. Reactive transport modeling was then performed by matching the experimental observations to verify the key factors and processes controlling pollutant migration. Results showed that rainfall caused Sb and As release from the shallow slag layer and promoted their downward movement. Nevertheless, the less permeable deeper layers limited physical flow and transport, which led to Sb and As accumulation at the interface. The re-adsorption of Sb and As onto iron oxides in the deeper, more acidic layers further retarded their migration. Because of the large difference between Sb and As concentrations, Sb re-adsorption was much less effective, which led to higher mobility. Our findings overall highlight the necessity of understanding the degree and impacts of physicochemical heterogeneity for risk exposure assessment and remediation of abandoned Sb smelting sites.

6.
Int J Biol Macromol ; 266(Pt 1): 131399, 2024 May.
Article in English | MEDLINE | ID: mdl-38641504

ABSTRACT

Developing an injectable hemostatic dressing with shape recovery and high blood absorption ratio for rapid hemostasis in noncompressible hemorrhage maintains a critical clinical challenge. Here, double-network cryogels based on carboxymethyl chitosan, sodium alginate, and methacrylated sodium alginate were prepared by covalent crosslinking and physical crosslinking, and named carboxymethyl chitosan/methacrylated sodium alginate (CM) cryogels. Covalent crosslinking was achieved by methacrylated sodium alginate in the freeze casting process, while physical crosslinking was realized by electrostatic interaction between the amino group of carboxymethyl chitosan and the carboxyl group of sodium alginate. CM cryogels exhibited large water swelling ratios (8167 ± 1062 %), fast blood absorption speed (2974 ± 669 % in 15 s), excellent compressive strength (over 160 kPa for CM100) and shape recovery performance. Compared with gauze and commercial gelatin sponge, better hemostatic capacities were demonstrated for CM cryogel with the minimum blood loss of 40.0 ± 8.9 mg and the lowest hemostasis time of 5.0 ± 2.0 s at hemostasis of rat liver. Made of natural polysaccharides with biocompatibility, hemocompatibility, and cytocompatibility, the CM cryogels exhibit shape recovery and high blood absorption rate, making them promising to be used as an injectable hemostatic dressing for rapid hemostasis in noncompressible hemorrhage.


Subject(s)
Alginates , Chitosan , Chitosan/analogs & derivatives , Cryogels , Hemorrhage , Hemostasis , Hemostatics , Chitosan/chemistry , Cryogels/chemistry , Alginates/chemistry , Animals , Hemorrhage/drug therapy , Rats , Hemostasis/drug effects , Hemostatics/chemistry , Hemostatics/pharmacology , Biocompatible Materials/chemistry , Humans , Male
7.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610395

ABSTRACT

Three-dimensional flexible piezoresistive porous sensors are of interest in health diagnosis and wearable devices. In this study, conductive porous sensors with complex triply periodic minimal surface (TPMS) structures were fabricated using the 3D printed sacrificial mold and enhancement of MWCNTs. A new curing routine by the self-resistance electric heating was implemented. The porous sensors were designed with different pore sizes and unit cell types of the TPMS (Diamond (D), Gyroid (G), and I-WP (I)). The impact of pore characteristics and the hybrid fabrication technique on the compressive properties and piezoresistive response of the developed porous sensors was studied. The results indicate that the porous sensors cured by the self-resistance electric heating could render a uniform temperature distribution in the composites and reduce the voids in the walls, exhibiting a higher elastic modulus and a better piezoresistive response. Among these specimens, the specimen with the D-based structure cured by self-resistance electric heating showed the highest responsive strain (61%), with a corresponding resistance response value of 0.97, which increased by 10.26% compared to the specimen heated by the external heat sources. This study provides a new perspective on design and fabrication of porous materials with piezoresistive functionalities, particularly in the realm of flexible and portable piezoresistive sensors.

8.
Biosens Bioelectron ; 257: 116329, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677023

ABSTRACT

Considerable effort has been invested in developing salicylic acid (SA) biosensors for various application purposes. Here, by engineering the sensing modules and host cell chassis, we have gradually optimized the NahR-Psal/Pr-based SA biosensor, increasing the sensitivity and maximum output by 17.2-fold and 9.4-fold, respectively, and improving the detection limit by 800-fold, from 80 µM to 0.1 µM. A portable SA sensing device was constructed by embedding a gelatin-based hydrogel containing an optimized biosensor into the perforations of tape adhered to glass slide, which allowed good determination of SA in the range of 0.1 µM-10 µM. Then, we developed a customized smartphone App to measure the fluorescence intensity of each perforation and automatically calculate the corresponding SA concentration so that we could detect SA concentrations in real cosmetic samples. We anticipate that this smartphone-based imaging biosensor, with its compact size, higher sensitivity, cost-effectiveness, and easy data transfer, will be useful for long-term monitoring of SA.


Subject(s)
Biosensing Techniques , Limit of Detection , Salicylic Acid , Smartphone , Biosensing Techniques/instrumentation , Salicylic Acid/analysis , Salicylic Acid/chemistry , Equipment Design , Humans , Hydrogels/chemistry , Cosmetics/chemistry , Cosmetics/analysis
9.
Gut Microbes ; 16(1): 2331435, 2024.
Article in English | MEDLINE | ID: mdl-38502202

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a common food-borne pathogen that can cause acute diseases. Lysine acetylation is a post-translational modification (PTM) that occurs in various prokaryotes and is regulated by CobB, the only deacetylase found in bacteria. Here, we demonstrated that CobB plays an important role in the virulence of EHEC O157:H7 and that deletion of cobB significantly decreased the intestinal colonization ability of bacteria. Using acetylation proteomic studies, we systematically identified several proteins that could be regulated by CobB in EHEC O157:H7. Among these CobB substrates, we found that acetylation at the K44 site of CesA, a chaperone for the type-III secretion system (T3SS) translocator protein EspA, weakens its binding to EspA, thereby reducing the stability of this virulence factor; this PTM ultimately attenuating the virulence of EHEC O157:H7. Furthermore, we showed that deacetylation of the K44 site, which is deacetylated by CobB, promotes the interaction between CesA and EspA, thereby increasing bacterial virulence in vitro and in animal experiments. In summary, we showed that acetylation influences the virulence of EHEC O157:H7, and uncovered the mechanism by which CobB contributes to bacterial virulence based on the regulation of CesA deacetylation.


Subject(s)
Escherichia coli Infections , Escherichia coli O157 , Escherichia coli Proteins , Gastrointestinal Microbiome , Animals , Escherichia coli O157/metabolism , Virulence , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Proteomics , Escherichia coli Infections/microbiology
10.
Skin Res Technol ; 30(3): e13616, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424730

ABSTRACT

OBJECTIVE: To investigate the life, sleep quality and anxiety of rosacea patients in Yunnan and the improvement of these aspects after treatment. METHODS: A total of 141 patients with rosacea and 123 healthy controls were included in our study. The quality of life, sleep quality and anxiety of patients with rosacea and healthy controls were investigated by the Rosacea Severity Scores (RSSs), the Medical Outcomes Study 36-item short-form health survey (SF-36), the Pittsburgh Sleep Quality Index (PSQI) and Self-rating Anxiety Scale (SAS). The quality of life, sleep quality and anxiety of patients with rosacea were assessed again after treatment. RESULTS: Compared with healthy controls, patients with rosacea had significantly lower physical component scores (PCS) and mental component scores (MCS) but higher PSQI and SAS scores. After treatment, rosacea patients showed significantly higher MCS but lower PSQI and SAS scores. Correlation analysis showed a significant correlation between PCS, MCS, PSQI, SAS and RSSs. CONCLUSIONS: Patients with rosacea have a lower quality of life and sleep quality and tend to be more anxious than healthy controls. In addition, the mental quality of life, sleep quality and anxiety of rosacea patients can be significantly improved after treatment. Therefore, it is important to pay attention to the psychological status of rosacea patients. Psychological counseling and intervention are necessary to better prevent and treat rosacea.


Subject(s)
Quality of Life , Sleep Wake Disorders , Humans , Quality of Life/psychology , Retrospective Studies , Sleep Quality , Sleep Wake Disorders/psychology , China/epidemiology , Anxiety/epidemiology , Anxiety/psychology , Sleep
11.
ACS Appl Mater Interfaces ; 16(12): 14626-14632, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38477624

ABSTRACT

As one of the interesting signaling mechanisms, the in situ growth reaction on a photoelectrode has proven its powerful potential in photoelectrochemical (PEC) bioanalysis. However, the specific interaction between the signaling species with the photoactive materials limits the general application of the signal mechanism. Herein, on the basis of an in situ growth reaction on a photoelectrode of single-atom-based photoactive material, a general PEC immunoassay was developed in a split-type mode consisting of the immunoreaction and PEC detection procedure. Specifically, a single-atom photoactive material that incorporates Fe atoms into layered Bi4O5I2 (Bi4O5I2-Fe SAs) was used as a photoelectrode for PEC detection. The sandwich immunoreaction was performed in a well of a 96-well plate using Ag nanoparticles (Ag NPs) as signal tracers. In the PEC detection procedure, the Ag+ converted from Ag NPs were transferred onto the surface of the Bi4O5I2-Fe SAs photoelectrode and thereafter AgI was generated on the Bi4O5I2-Fe SAs in situ to form a heterojunction through the reaction of Ag+ with Bi4O5I2-Fe SAs. The formation of heterojunction greatly promoted the electro-hole separation, boosting the photocurrent response. Exemplified by myoglobin (Myo) as the analyte, the immunosensor achieved a wide linear range from 1.0 × 10-11 to 5.0 × 10-8 g mL-1 with a detection limit of 3.5 × 10-12 g mL-1. This strategy provides a general PEC immunoassay for disease-related proteins, as well as extends the application scope of in situ growth reaction in PEC analysis.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Biosensing Techniques/methods , Immunoassay/methods , Silver , Myoglobin , Electrochemical Techniques/methods , Limit of Detection
12.
Heliyon ; 10(3): e24720, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333869

ABSTRACT

Drug-eluting stents (DES) and dual antiplatelet regimens have significantly improved the clinical management of ischemic heart disease; however, the drugs loaded with DES in clinical practice are mostly paclitaxel or rapamycin derivatives, which target symptoms of post implantation proliferation and inflammation, leading to delayed re-endothelialization and neo-atherosclerosis. Along with the treatments already in place, there is a need for novel strategies to lessen the negative clinical outcomes of DES delays as well as a need for greater understanding of their pathobiological mechanisms. This review concentrates on the function of cathepsins (Cats) in the inflammatory response and granulation tissue formation that follow Cat-induced damage to the vasculature scaffold, as well as the functions of Cats in intimal hyperplasia, which is characterized by the migration and proliferation of smooth muscle cells, and endothelial denudation, re-endothelialization, and/or neo-endothelialization. Additionally, Cats can alter essential neointima formation and immune response inside scaffolds, and if Cats are properly controlled in vivo, they may improve scaffold biocompatibility. This unique profile of functions could lead to an original concept for a cathepsin-based coronary intervention treatment as an adjunct to stent placement.

13.
Appl Environ Microbiol ; 90(3): e0181823, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38332488

ABSTRACT

Zearalenone (ZEN) and its derivatives are estrogenic mycotoxins known to pose significant health threats to humans and animals. Especially, the derivative α-zearalanol (α-ZAL) is over 10 times more toxic than ZEN. Simultaneous degradation of ZEN and its derivatives, especially α-ZAL, using ZEN lactone hydrolases (ZHDs) is a promising solution to eliminate their potential hazards to food safety. However, most available ZHDs exhibit limited activity toward the more toxic α-ZAL compared to ZEN. Here, we identified a broad-substrate spectrum ZHD, named ZHDAY3, from Exophiala aquamarina CBS 119918, which could not only efficiently degrade ZEN but also exhibited 73% relative activity toward α-ZAL. Through rational design, we obtained the ZHDAY3(N153H) mutant, which exhibited the highest specific activity (253.3 ± 4.3 U/mg) reported so far for degrading α-ZAL. Molecular docking, structural comparative analysis, and kinetic analysis collectively suggested that the shorter distance between the side chain of the catalytic residue His242 and the lactone bond of α-ZAL and the increased binding affinity to the substrate were mainly responsible for the improved catalytic activity of ZHDAY3(N153H) mutant. This mechanism was further validated through additional molecular docking of 18 mutants and experimental verification of six mutants.IMPORTANCEThe mycotoxins zearalenone (ZEN) and its derivatives pose a significant threat to food safety. Here, we present a highly promising ZEN lactone hydrolase (ZHD), ZHDAY3, which is capable of efficiently degrading both ZEN and the more toxic derivative α-ZAL. Next, the ZHDAY3(N153H) mutant obtained by single-point mutation exhibited the highest specific activity for degrading α-ZAL reported thus far. We further elucidated the molecular mechanisms underlying the enhanced hydrolytic activity of ZHDAY3(N153H) toward α-ZAL. These findings represent the first investigation on the molecular mechanism of ZHDs against α-ZAL and are expected to provide a significant reference for further rational engineering of ZHDs, which will ultimately contribute to addressing the health risks and food safety issues posed by ZEN-like mycotoxins.


Subject(s)
Mycotoxins , Zearalenone , Zeranol , Humans , Animals , Zearalenone/chemistry , Zearalenone/metabolism , Zeranol/chemistry , Zeranol/metabolism , Lactones , Point Mutation , Hydrolases/metabolism , Molecular Docking Simulation , Kinetics , Mycotoxins/metabolism
14.
Sci Total Environ ; 922: 171310, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38423312

ABSTRACT

In the Karst Critical Zone (KCZ), mining and urbanization activities produce multiple pollutants, posing a threat to the vital groundwater and surface water resources essential for drinking and irrigation. Despite their importance, the interactions between these pollutants in the intricate hydrology and land use of the KCZ remain poorly understood. In this study, we unraveled the transformation mechanisms and sources of nitrogen, sulfate, and carbon using multiple isotopes and the MixSIAR model, following hydrology and surface analyses conducted in spatial modelling with ArcGIS. Our results revealed frequent exchange between groundwater and surface water, as evidenced by the analysis of δD-H2O and δ18O-H2O. Nitrification predominantly occurred in surface water, although denitrification also made a minor contribution. Inorganic nitrogen in both groundwater and surface water primarily originated from soil nitrogen (48 % and 49 %, respectively). Sewage and manure were secondary sources of inorganic nitrogen in surface water, accounting for 41 % in urban and 38 % in mining areas. Notably, inorganic sulfur oxidation displayed significant spatial disparities between urban and mining areas, rendering groundwater more susceptible to sulfur pollution compared to surface water. The frequent interchange between groundwater and surface water posed a higher pollution risk to groundwater. Furthermore, the primary sources of CO2 and HCO3- in both groundwater and surface water were water­carbonate reactions and soil respiration. Sulfide oxidation was found to enhance carbonate dissolution, leading to increased CO2 release from carbonate dissolution in the KCZ. These findings enhance our understanding of the transformation mechanisms and interactions of nitrogen, sulfur, and carbon in groundwater and surface water. This knowledge is invaluable for accurately controlling and treating water pollution in the KCZ.

15.
Water Res ; 252: 121232, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309068

ABSTRACT

Magnetite is a reductive Fe(II)-bearing mineral, and its reduction property is considered important for degradation of contaminants in groundwater and anaerobic subsurface environments. However, the redox condition of subsurface environments frequently changes from anaerobic to aerobic owing to natural and anthropogenic disturbances, generating reactive oxygen species (ROS) from the interaction between Fe(II)-bearing minerals and O2. Despite this, the mechanism of ROS generation induced by magnetite under aerobic conditions is poorly understood, which may play a crucial role in As(III) oxidation. Herein, we found that magnetite could activate O2 and induce the oxidative transformation of As(III) under aerobic conditions. As(III) oxidation was attributed to the ROS generated via structural Fe(II) within the magnetite octahedra oxygenation. The electron paramagnetic resonance and quenching tests confirmed that O2•-, H2O2, and •OH were produced by magnetite. Moreover, density function theory calculations combined with experiments demonstrated that O2•- was initially formed via single electron transfer from the structural Fe(II) to the adsorbed O2; O2•- was then converted to •OH and H2O2 via a series of free radical reactions. Among them, O2•-and H2O2 were the primary ROS responsible for As(III) oxidation, accounting for approximately 52 % and 19 % of As(III) oxidation. Notably, As(III) oxidation mainly occurred on the magnetite surface, and As was immobilized further within the magnetite structure. This study provides solid evidence regarding the role of magnetite in determining the fate and transformation of As in redox-fluctuating subsurface environments.


Subject(s)
Ferrosoferric Oxide , Oxygen , Ferrosoferric Oxide/chemistry , Reactive Oxygen Species , Oxygen/chemistry , Hydrogen Peroxide , Oxidation-Reduction , Minerals , Ferric Compounds/chemistry
16.
Langmuir ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319711

ABSTRACT

Numerous innovative granulation techniques utilizing the concept of liquid marbles have been proposed before. However, these processes frequently encounter issues such as collisions, aggregation, and fragmentation of liquid/melt marble during the granulation process. In this study, the oriented superhydrophobic surface (OSS) was successfully prepared by utilizing copper wire to solve the above problem, facilitating efficient batch production and guided transportation of uniform marbles. The parameters and mechanisms of this process were thoroughly studied. The optimized structure is that the copper wire spacing (d) and height (h) are set as 1.0 and 0.1 mm, respectively. This resulted in a surface contact angle (CA) of 156° and anisotropic sliding (ΔSA) of 16.3 ± 1.34°. Using the prepared substrate, high-quality urea products were successfully obtained through the controlled transport of urea melt marbles. The mechanism of guided and directional drag reduction, based on the solid/solid contact on the surface, is proposed. These findings in this study have significant implications for improving granulation processes.

17.
Pharmaceutics ; 16(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399302

ABSTRACT

Traditional tumor treatments have the drawback of harming both tumor cells and normal cells, leading to significant systemic toxic side effects. As a result, there is a pressing need for targeted drug delivery methods that can specifically target cells or tissues. Currently, researchers have made significant progress in developing targeted drug delivery systems for tumor therapy using various targeting ligands. This review aims to summarize recent advancements in targeted drug delivery systems for tumor therapy, focusing on different targeting ligands such as folic acid, carbohydrates, peptides, aptamers, and antibodies. The review also discusses the advantages, challenges, and future prospects of these targeted drug delivery systems.

18.
Environ Res ; 251(Pt 1): 118570, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38417655

ABSTRACT

The dissolved carbon cycling in river system fueled by wastewater treatment plant effluent have been a research hotspot. However, the composition of dissolved carbon (DC) in wastewater effluents from karst regions remains poorly understood, resulting in a lack of clarity regarding its impact on the dynamics of dissolved carbon in karst rivers. To address this knowledge gap, this study investigated variations of dissolved inorganic (DIC) and organic C (DOC) components in effluent in karst regions and preliminarily discussed their influence on the DC cycling in karst rivers. The results showed that bicarbonate (HCO3-) in WWTP effluents makes more than 90% of the total dissolved inorganic carbon (DIC). The partial pressure of aqueous CO2 (pCO2) of the effluent reached 14450 ± 10084µtam, and pCO2 level declined with increasing river distance from the effluent discharge, effluent acted as a strong CO2 emitter to the atmosphere. Stable carbon isotope and water chemistry evidence revealed that organic matter degradation made important contributions to the high CO2 concentrations in effluent. PHREEQC mixing simulation together with filed samples data indicated that the DIC species can be changed, and pCO2 increased in receiving karst river water after mixed with effluent. The dissolved organic carbon (DOC) of effluent contained humic-like and protein-tryptophan-like, both of them appeared important and recent autochthonous, which could interfere the distinguish the sources of DOC in receiving karst river water. Thus, these findings highlight that the effluent can be an essential factor for the changes of the karst riverine DC pool, which advance our understanding on karst riverine DC evolution under anthropogenic activities. As more than 30% of the earth surface in China, northern America, and Europe are covered by carbonate rocks, this study has relevant implications for other karst regions as it underscores the influence of WWTP effluents on the carbon cycle in karst rivers. Such information and knowledge are valuable for monitoring and managing effluent-receiving river in other karst regions in the world.

19.
Adv Mater ; : e2313090, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385793

ABSTRACT

In the last decade, interfacial solar steam generation (ISSG), powered by natural sunlight garnered significant attention due to its great potential for low-cost and environmentally friendly clean water production in alignment with the global decarbonization efforts. This review aims to share the knowledge and engage with a broader readership about the current progress of ISSG technology and the facing challenges to promote further advancements toward practical applications. The first part of this review assesses the current strategies for enhancing the energy efficiency of ISSG systems, including optimizing light absorption, reducing energy losses, harvesting additional energy, and lowering evaporation enthalpy. Subsequently, the current challenges faced by ISSG technologies, notably salt accumulation and bio-fouling issues in practical applications, are elucidated and contemporary methods are discussed to overcome these challenges. In the end, potential applications of ISSG, ranging from initial seawater desalination and industrial wastewater purification to power generation, sterilization, soil remediation, and innovative concept of solar sea farm, are introduced, highlighting the promising potential of ISSG technology in contributing to sustainable and environmentally conscious practices. Based on the review and in-depth understanding of these aspects, the future research focuses are proposed to address potential issues in both fundamental research and practical applications.

20.
Sci Total Environ ; 918: 170666, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38316310

ABSTRACT

Colloids can potentially affect the efficacy of traditional acid mine drainage (AMD) treatment methods such as precipitation and filtration. However, it is unclear how colloids affect antimony (Sb) migration in AMD, especially when natural organic matter (NOM) is present. To conduct an in-depth investigation on the formation and migration behavior of NOM, iron (Fe), Sb and NOM-Fe-Sb colloids in AMD, experiments were performed under simulated AMD conditions. The results demonstrate significant variations in the formation of NOM-Fe-Sb colloids (1-3-450 nm) as the molar ratio of carbon to iron (C/Fe) increases within acidic conditions (pH = 3). Increasing the C/Fe molar ratio from 0.1 to 1.2 resulted in a decrease in colloid formation but an increase in particulate fraction. The distribution of colloidal Sb, Sb(III), and Fe(III) within the NOM-Fe-Sb colloids decreased from 68 % to 55 %, 72 % to 57 %, and 68 % to 55 %, respectively. Their distribution in the particulate fraction increased from 28 % to 42 %, 21 % to 34 %, and 8 % to 27 %. XRD, FTIR, and SEM-EDS analyses demonstrated that NOM facilitates the formation and crystallization of Fe3O4 and FeSbO4 crystalline phases. The formation of the colloids depended on pH. Our results indicate that NOM-Fe-Sb colloids can form when the pH ≤ 4, and the proportion of colloidal Sb fraction within the NOM-Fe-Sb colloids increased from 9 % to a maximum of 73 %. Column experiments show that the concentration of NOM-Fe-Sb colloids reaches its peak and remains stable at approximately 3.5 pore volumes (PVs), facilitating the migration of Sb in the porous media. At pH ≥ 5, stable NOM-Fe-Sb colloids do not form, and the proportion of colloidal Sb fraction decreases from 7 % to 0 %. This implies that as pH increases, the electrostatic repulsion between colloidal particles weakens, resulting in a reduction in the colloidal fraction and an increase in the particulate fraction. At higher pH values (pH ≥ 5), the repulsive forces between colloidal particles nearly disappear, promoting particle aggregation. The findings of this study provide important scientific evidence for understanding the migration behavior of NOM-Fe-Sb colloids in AMD. As the pH gradually shifts from acidic to near-neutral pH during the remediation process of AMD, these results could be applied to develop new strategies for this purpose.

SELECTION OF CITATIONS
SEARCH DETAIL
...